|
Kuratowski's free set theorem, named after Kazimierz Kuratowski, is a result of set theory, an area of mathematics. It is a result which has been largely forgotten for almost 50 years, but has been applied recently in solving several lattice theory problems, such as the congruence lattice problem. Denote by the set of all finite subsets of a set . Likewise, for a positive integer , denote by the set of all -elements subsets of . For a mapping , we say that a subset of is ''free'' (with respect to ), if for any -element subset of and any , ,. Kuratowski published in 1951 the following result, which characterizes the infinite cardinals of the form . The theorem states the following. Let be a positive integer and let be a set. Then the cardinality of is greater than or equal to if and only if for every mapping from to , there exists an -element free subset of with respect to . For , Kuratowski's free set theorem is superseded by Hajnal's set mapping theorem. == References == * P. Erdős, A. Hajnal, A. Máté, R. Rado: ''Combinatorial Set Theory: Partition Relations for Cardinals'', North-Holland, 1984, pp. 282–285. * C. Kuratowski, ''Sur une caractérisation des alephs'', Fund. Math. 38 (1951), 14–17. * John C. Simms (1991) "Sierpiński's theorem", Simon Stevin 65: 69–163. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kuratowski's free set theorem」の詳細全文を読む スポンサード リンク
|